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An anisotropic lattice gas dynamics is investigated for which particles on 2v~ 
jump to empty nearest neighbor sites with (fast) rate e -2 in a specified direction 
and some particular configuration-dependent rates in the other directions. The 
model is translation and reflection invariant and is particle conserving. The 
space coordinate in the "fast-rate" direction is rescaled by e 1. It follows that 
the density field converges in probability, as ~ $ 0, to the corresponding solution 
of a nonlinear diffusion-type equation. The microscopic fluctuations about the 
deterministic macroscopic evolution are determined explicitly and it is found 
that the stationary fluctuations decay via a power law ( ~ 1/r d) with the direction 
dependence of a quadrupole field. 

KEY WORDS: Stochastic lattice gases; kinetic limit; power law decay; fast 
rate exclusion process; long-range correlations. 

1. I N T R O D U C T I O N  

Recently, it was observed that homogeneous lattice gases subject to certain 
"anisotropic nonequilibrium dynamics" may show long-range stationary 
correlations. ~1'2) This is based on formal expansions around an infinite- 
temperature dynamics and is supported by extensive computer simulations. 
We start by describing one of the simplest models considered. It is a 
symmetric exclusion process on the square lattice Z 2 in which the rates are 
chosen to be direction dependent. More precisely, at each site i~ 7/2 there 
is an occupation variable q(i) with value 0 if the site i is empty, 1 if it is 
occupied. The full particle configuration is denoted by q = {t/(i), i~ 7/2} 
s {0, 1 }~2. The configurations t/evolve according to a stochastic hopping 
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dynamics. If the configuration before a jump is q, with q(i)= 1, q(j)= O, 
then after the particle jumps from i to j, the configuration is r/ij with 

fq( i )  if u = j  
~?iJ(u)=~q(j) if u=i  (1.1) 

! 

[r/(u) else 

The rate at which this jump occurs is denoted by c(i, j, q). We choose them 
symmetrically (so that they can be interpreted as the rates at which the 
occupations at i and j are exchanged) and of the form 

i if i - j =  +_e2 
c( i , j ,q)=c(j , i ,  rl)= (fl[H(~l~ if i - j =  ++_e 1 (1.2) 

else 

where e~ and e2 are, respectively, the horizontal and vertical unit vectors in 
y2. The energy H(r/) is the usual nearest neighbor Ising Hamiltonian with 
horizontal (K1) and vertical (K2) coupling: 

H(q) = -4K1 Z q(i) r / ( j ) -  4K 2 ~ q(i) r/(j) (1.3) 
i - - j - -  +--el i - - j =  +-e2 

The function (b in (1.2) is normalized to qh(0)= 1 and satisfies the relation 

q~(z) = e z~b(-z), z e ~  (1.4) 

This choice implies that, at least for each of the lattice directions 
separately, the condition of detailed balance is satisfied, i.e., 

c~(i,j,q)=c~(i,j,  qO)exp{-/?~[H(qO)-H(q)]}, ~ = 1 , 2  (1.5) 

with ill=-~?, /?2--0, and c~(i,j,q)=q~(/?=[H(q~ if i - - j=  +_e= 
(and is zero otherwise). 

In the usual way (see, for example, refs. 3 and 4), the description 
above allows one to define a symmetric exclusion process ~/t, t > 0 ,  with 
speed change given by (1.2). The generator L of this Markov process can 
be written as 

L = Lo.2 + LB. 1 (1.6) 

where Lz ..... ~ = l, 2, generates the exchanges of the occupation variables 
in the e~ direction at inverse temperature/?~, that is, for any local function 
f o n  (2, 

Lfl . . . .  f(~) = ~, c~(i, j, q)[f(q/J) - f ( r / ) ]  (1.7) 
(6) 

with the sum over all nearest neighbor bonds (t]) .  
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We are interested in a characterization of the stationary states for this 
process, and, in particular, in the behavior of the correlations in such a 
state for small but nonzero /3 (high temperature). At /3=0, there is a 
complete description of the stationary states(3); they are the convex 
combinations of product measures with constant density p, 0 <~ p ~< 1. It is 
argued in refs. 1 and 2 that putting /3 50 ,  /3 small, has a rather drastic 
effect: the stationary covariance would only decay as a power and with a 
strong direction dependence. The Fourier transform S(k) of the stationary 
covariance E[( t / (0)-  p)(tl(i ) - p ) ]  = C(i) was calculated to first order in/3. 
There is a constant Q ~/3 such that 

-k~ 
S(k) ~ const + Q kZk2 (1.8) 

for small k. It implies a decay 

X 2 - -  y 2  

C(i) ~ Q (x 2 + y2)2 for i - ( x , y ) ~ o o  (1.9) 

typical of an electrostatic potential generated by a charge distribution with 
quadrupole moment Q. Note that such behavior is unheard of in equili- 
brium statistical mechanics, where, at high temperature, the truncated 
correlations decay in the same sense as the potential. (5~ In particular, if we 
impose reversibility for the dynamics with respect to the Gibbs measures vH 
for interaction H of (1.3) by putting/31 =/32-/3  in (1.5), then (1.9) has to 
be replaced by the first-order term in a high-temperature expansion for the 
equilibrium covariance CH(i) which is nonzero only if i = 0  or i =  _+e~, 
~ =  1, 2, i.e., CI_i(i)=O(/32) if Ii] > 1. We refer to ref. 2 for a detailed 
description and discussion of this nonequilibrium phenomenon, including 
further references. 

While a rigorous analysis of this effect for the moment seems rather 
hard, the goal of this paper is to study this phenomenon exactly in the limit 
where the exchanges in the vertical direction become very fast. That is, the 
new rate in (1.2) is c(i, j, q )=  e -2 if i - j =  +_e2 with e $0. At the same time, 
the vertical space coordinate will be rescaled by e 1. Direct information 
about the stationary states for the microscopic model (1.6) is lost in this 
procedure, but we will recover the effect in the study of the fluctuations 
of the appropriately rescaled density field. A similar study was done 
by van Beijeren (6) for a simple diffusion model, where, using semi- 
phenomenological arguments, the appropriate fluctuating hydrodynamics 
is shown to give the same type of long-range correlations as we are finding 
here. A unified treatment on the microscopic level of these and other 
models using weak coupling expansions is in progress. Finally, let us 
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emphasize that the model is translation invariant, in contrast with 
previously considered systems (see, for example, refs. 7 and 8). 

A second motivation to study the "fast rate limit" of (1.2) is to derive 
the macroscopic equation of fluctuating hydrodynamics generalizing and 
making rigorous a microscopic model of the type considered by van Beijeren 
and Schulman (9) and also investigated by Krug et al. ~~ We have to add, 
however, that the space rescaling we will apply is only partial, keeping in 
this way to the middle between microscopic models and the fully macroscopic 
approach. 

The physical ideas behind the study of the system in the fast rate limit 
are well understood(l~): for e l 0  the system has two well-defined time 
scales: (i) a microscopic one in which there are no exchanges of particles 
between vertical columns and the system reaches a stationary state within 
each column corresponding to the infinite-temperature dynamics in the 
vertical direction, and (ii) a macroscopic scale in which the system has 
exchanges of particles between columns with rates which are configuration 
dependent. We refer to the above and refs. 12-14 for the physical context 
and origin of related models. 

The mathematical techniques we will use, are very similar to those 
employed in the derivation of reaction-diffusion equations for interacting 
particle systems (see, for example, ref. 15) and we consider our treatment 
here as an application of by now well-established methods (t6) t o  the 
rigorous study (the first, to our knowledge) of an interesting nonequili- 
brium phenomenon: the origin of long-range spatial correlations. 

In the next section we describe in detail the kinet ic  limit we are 
considering. In this limit the trajectories of the Markov process become 
concentrated on the solution of a nonlinear diffusion equation. Section 3 
contains the results on the microscopic fluctuations about the deterministic 
equation. The appropriately rescaled fluctuation process determines in the 
limit a generalized Ornstein-Uhlenbeck process. In particular, the fluctua -~ 
tions about constant densities (= the  only stationary and homogeneous 
solutions to the evolution equation at high temperature) are analyzed and 
it is found that the spectral density of the limiting process is nonanalytic at 
the origin in Fourier space. It implies a weak decay of the corresponding 
covariance. Section 4 is devoted to the proofs of these results. 

2. T H E  FAST RATE L I M I T  

The following analysis will be carried out in two space dimensions, but 
the higher-dimensional case poses--except for notation--no additional 
difficulties. We therefore continue to use the notation of the previous 
section and we write i = xel  + ye2 = (x, y) ~ 7/2 for a general site. 
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Let e > 0 be small. By speeding up the exchanges in the vertical direction 
we mean to replace (1.6) by the generator 

L ~ = e - 2 L o , 2  + L~.I (2.1) 

That is, the rate for exchanges in the vertical direction is now e 2. In order 
to preserve spatial variations of the density field in the vertical direction, 
we have to rescale the corresponding space coordinate by e-1. The initial 
data are distributed according to a product measure ~t ~, with densities 

S(~(x, y))= po(X, ~y) (2.2) 

where po(X, r), x ~ 77, is smooth in r s N and 0 ~< po(x, r) ~< 1. Let t/~, t > 0, 
be the process with generator L ~ of (2.1) and let ~,, denote the corresponding 
expectation. We will argue that in the limit e $ 0, E ~ ~,(~/~(x, y)) is close to 
p , (x ,  ey), a solution to the following nonlinear diffusion-type equation: 

p, (x, r) = ~r 2 p , (x ,  r) - V *  Jx (p , ( . ,  r) ) (2.3) 

where the last term in (2.3) is the discrete divergence [ V * f ( x ) -  
f ( x -  1 ) - f ( x ) ]  of the current Jx (P t ( ' ,  r)) between (x, r) and ( x +  1, r) 
which, itself, is a difference of the particle transport per unit time from 
(x, r) to (x + 1, r) and back: 

Jx(P, (  ", r)) = R ( p , ( x  + 2, r), p t ( x  + 1, r), p t (x ,  r), p t ( x  - 1, r)) 

- R ( p t ( x  - 1, r), p , (x ,  r), p t ( x  + 1, r), p t ( x  + 2, r)) (2.4) 

R( . )  is the expected rate of a particle jumping to a nearest neighbor site in 
the horizontal direction, 

R(p(1), p(2), p(3), p(4)) 

= (qs ( -4 / / [K ,n (2 ,  2) 7(2, 2) 7(4, 2) + Klr/(3 , 2) ~/(1, 2) 

+ K2q(2, 2) q(3, 3) + K2q(3, 2) q(2, 3) + K2t/(3, 2) 7(2, 1) 

+ Kzq(2, 2) t/(3, 1 ) - K l q ( 3 ,  2) r/(4, 2 ) -  K1~/(2, 2) t/(1, 2) 

- K2q(3, 2) 7(3, 3 ) -  K2q(3, 2) ~/(3, 1 ) -  K2~/(2, 2) r/(2, 3) 

- K2~1(2, 2) q(2, 1)]) 7(2, 2)[1 - r/(3, 2)] ),0(1},...,,0(4) (2.5) 

with respect to the product measure having densities 

(~/(k, ~(k) l ) ) p ( l ) , . . . , p ( 4 ) = - p  , k =  1, 2, 3,4; I=  1,2, 3 (2.6) 



672 Maes 

The initial condition to Eq. (2.3) is given by P0 [-see (2.2)]. Note that the 
current (2.4) is a polynomial in the density and therefore, using iteration, 
one can prove 

Proposition 1. For any initial condition po(x, r) smooth in r ~ ~, 
0 ~ Po ~< 1, with uniformly bounded derivatives, there is a unique solution 
p,(x,r)  smooth in r, O<~pt<~l, to (2.3), having uniformly bounded 
derivatives in r. 

Note that the dynamics (1.2) was effectively changed by putting in the 
factor 8 -2 in (2.1). Therefore, the limit e~0 is called a kinetic limit, (4) to 
distinguish it from other limiting procedures, such as the hydrodynamic 
limit. Equation (2.3) is a deterministic conservation equation for the time 
evolution of the density field, obtained in much the same way as reaction- 
diffusion equations. ~5) The fast environment-independent exchanges in the 
vertical direction, combined with the vertical space rescaling, produce the 
linear diffusion term. The exchanges in the horizontal direction occur on a 
much slower time scale and their influence on the change in the density 
must be calculated in the so-called "local equilibrium measure," i.e., the 
distribution at time t in a box of vertical size ~ 1, looks like a product 
measure with instantaneous densities which vary column per column in the 
horizontal direction, which is kept discrete. Here, Eq. (2.3) appears only as 
a first step in the study (in the next section) of the fluctuations. Its derivation 
involves proving a law of large numbers, the mathematical mechanism 
underlying the ideas above. We present without proof one of the more 
relevant results in that respect. 

Proposition 2. For all T>~0 and n>~0, 

lim sup sup E~ q t ( i ) -  I-I pt(x, = 0  (2.7) 
~ 0  O<<.t<~T A ~ 7 Z 2  i i ~ A  

IA] = n i = ( x ,  y )  

where pt(x, r) solves (2.3). Here LAI is the cardinality of the set A. 

3. T H E  F L U C T U A T I O N  P R O C E S S  

We want to determine the microscopic fluctuations about the deter- 
ministic evolution equation (2.3). Formally (and following the notation of 
ref. 10), the limiting process describing the density fluctuation field will be 
given, in some generalized weak form, by a linear Langevin equation: 

8 8 2 
8t ~,(x, r) = -fir 2 ~t(x, r) - -V*Jx(~,(- ,  r)) + W(x, r, t) (3.1) 



Kinetic Limit of Lattice Gas Dynamics 673 

with linearized horizontal current 

~x(~,( , r)) = R14(p,(x + 2, r), p,(x + 1, r), p,(x,  r), p,(x- 1, r)) 

x E~,(x + 2, r) - ~ , ( x -  1, r ) ]  

-~ R23(Dt(X ~- 2, r), pt(x + 1, r), pt(x, r), p,(x -- l, r)) 

x [~t(x + 1, r) -- ~,(x, r)] (3.2) 

Rkz = 0p~k) ~ t )  R, k, l =  1,..., 4 (3.3) 

[the function R was defined in (2.5)] and where W(x, r, t) in (3.1) is a 
"white noise" with covariance 

(W(x ,  r, t) W(x', r', t ' ))  

( = 6xx,~-~r , {pt(x, r)[-1 - p , ( x ,  r)] O(r--r')} 

+ ~ ( r -  r') V ' V *  lax(p,(. ,  r)) 6xx,]) 6 ( t -  t ') (3.4) 
r  

and 
ax(pt(' ,  r)) - R(p,(x  + 2, r), p~(x + 1, r), p~(x, r), p,(x - 1, r)) 

+ R ( p , ( x -  l, r), p,(x, r), pt(x + l, r), pt(x + 2, r)) (3.5) 

More precisely, for all e > 0 and A s ~ ( d  = the finite subsets of Z2), ~b ~ 5 p 
(5o is the Schwartz space of rapidly decreasing functions), we define (now 
using the notation of ref. 15) the random variables (or the fluctuation field) 

Y~(A, O) =- x/-s ~ Z ~b(ey)E~(x, y ) -  E;,~(r/t(x, y))] (3.6) 
x ~ A  y ~ Z  

For A = {x}, we write Y;(A, O) = Y~(x, 0). One must consider { Y~} as a 
process on the path space D([0, oc), LP) with state space ~ consisting 
of the functionals G on d x 5 P which are additive on d (G(A w B. O) = 
G(A, O) + G(B, ~) if A ~ B = ~ ]  and linear on 5 p (Schwartz distributions). 
Define for Ye 5 ~ 

J , ( r ,  ~b)_= Y(x+ 2, V~4~b) - Y ( x - 1 ,  V~4~b) 

+ Y(x + 1, V~3~b)- Y(x, VZ3~b) (3.7a) 

with V~Zqt E 5 ~, k, l = 1 ..... 4, given by 

V~t~(r) = Rkl(p,(x + 2, r), Pt(X + 1, r), p,(x, r), p , (x- -  1, r)) ~b(r) (3.7b) 



674 Maes 

Finally, put 

with 

lIB,(A, q~)l[ 2= ~ <Ms(x, @) Bs(x', @)) 
x,  x '  r A 

<~/x ,O)as(x ' ,O))  

- f dr (;(r) ~,'(r) 6x, x,p~(x, r ) [1  - p/x ,  r ) ]  

(3.8) 

( ,  

+ J dr ~(r)  ~'(r)[a~,~,[aAps(., ~)) + a~_ , (p / . ,  ~))] 

- 6~,x,+~ a x _  I(P~( ", r ) )  - ~ , ~ ' - 1  a ~ ( p ~ ( . ,  r))] 

Let P~ be the probability distribution of { Y~ }. 

(3.9) 

Propos i t ion  3. P~ ~ P weakly as e { 0, where P is the distribution 
of a generalized Ornstein-Uhlenbeck process { Y, }, uniquely determined by 
the condition that the Yt(A, (~) are centered, that for all g ~ C~, 

f2 g(Yt(A, (k))- ds g'(Ys(A, ~b))[Ys(A , q~")- ~ V*Jx(Ys, ~b))] 
x c A  

f2 - ds g"(Ys(A, ~b))llBs(A, ~)112 (3.10) 

is a P-martingale, and that the law of the initial condition { Yo(x, (~)} is 
Gaussian with covariance 

P(Yo(A, ~) to(a, 0)) = 6A,B Z f dr ~(r) 0(r) po(X, r)C1 - po(X, r)] 
x ~ A  

(3.11) 

Consider now the constant solutions pt(x,r)=p, 0~<p~<l, of 
Eq. (2.3). For that choice, the currents {Jx} vanish identically. The equal- 
time correlations of the fluctuation field are now most easily described by 
Fourier transforming the formal stochastic differential equation (3.1). We 
get 

~t ~,(k~, k2)= k2, k:) t )-k2~,(kl ,  k2)-2~,(kl ,  

X {R23(P  ) + [ R 1 4 ( p  ) - -  R23(P)] c o s  k I - R 1 4 ( p  ) c o s  2k~ } 

(3.12) 
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where 

( l~(k l ,  k2, t) I$'(k'l, k'2, t') ) 

= - 6 ( k - k ' ) a ( t - t ' ) [ k ~ p ( 1 - p ) +  2R(p)(1-cOSkl)] (3.13) 

with k=(k l , k2 )  in the strip - ~ < k  l < x ,  - ~ < k 2 < ~ ,  and we have 
used in (3.11) and (3.12), R ( p ) -  R(p, p, p, p), etc., as short-hand notations. 
The static structure function, i.e., the Fourier transform of the stationary 
covariance for the process described in (3.12), is now easy to compute: 

kZp(1 - p) + 2R(p)(1 - cos k,)  
S(kl, kz) - k2 + 2[R23(p) + R14(p)(1 + 2 cos kl)](1 - cos kl) (3.14) 

Note that while S(k) remains bounded at k = 0, it is not analytic whenever 

F(p)=-R(p)-p(1-p)[R23(p)+ 3R14(p)]#O (3.15) 

Of course, F ( p ) = 0  at /~=0, for which R(p)=q~(O)p(1-p),  Rz3(p)= 
#(0), and R14(p)=0. However, before further investigating (3.14) and 
condition (3.15), we give a more precise formulation of the discussion 
above. 

P r o p o s i t i o n  4. The equal-time covariance of the limiting process 
{ Y,}, described in Proposition 3, satisfies 

P(L(A, ~) Y,(B, g,)) 
= P( Yo( A, (~ ) Yo( B, ~ ) ) 

+ P {fo'dSIY~(A,q)")- ~ V*Jx(Y. ,O))I  Y~(B,$) 
x ~ A  

+ ds Y~(A, (~) Y.(B, ~ " ) -  ~ V * J ~ , ( Y .  4,)) 
x ' e B  

+ ds (B~(A, r Bs(B, ~,)) (3.16) 

It follows that the stationary covariance of the liiting process { Yt} 
corresponding to the constant solutions p,(x, r)-= p, 0 ~<p ~< 1, of Eq. (2.3) 
is given by 

P(Y~(x,  q)) Y~(x', 0)) 

f~ f~ = dk 2 dk 1 q~(k2) ~(k2 ) ~(kl ' k2)eikl .(x-x') (3.17) 
o o  Tc 
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where the caret denotes Fourier transform and S is the spectral density 
given in (3.14). 

The stationary covariance kernel corresponding to (3.17) has a decay 

X 2 _ _  C F  2 

S(x, r) ~ F(p) (x 2 + cr2) 2 (3.18) 

as I(x,r)t2=x:+r2~c~, for some constant c. We thus recover the 
phenomenon of power law decay of the static covariance, as described in 
ref. 2. 

It remains to investigate condition (3.15) to find more explicit situations 
under which this nonequilibrium effect occurs. F(p) also depends on the 
function 4 and the coupling parameters a = -4/~K1 and b -  -4/~K:, and 
can be calculated starting from (2.5) 

F(p) = p:(1 - p)2 (214(b)  - 4(  - b)3 [p :  + (1 - p ) : ] :  

+ 3 E 4 ( a ) - ~ ( - a ) ]  { [p2+  ( 1 - p ) Z ] 2 + 2 p 2 ( 1 - p ) 2 }  

+ [84 ( a  + b) - 8q~( - a -  b) + 44(a  - b) - 4 4 ( - a  + b) 

+ 24(2b) - 24(  - 2 b ) ]  p(1 - p)[pZ + (1 - p)Z] + E54(a + 2b) 

- 5 4 ( - a - 2 b ) + 4 ( a - 2 b ) - 4 ( - a + 2 b ) ]  p2(1 - p)2) (3.19) 

This expression is general and the following special cases can be 
considered. If b = 0 [no vertical coupling in the Hamiltonian (4.2)], then 

F(p) = 3p2(1 - p)2 [ 4 ( a  ) _ 4 ( - a ) ]  (3.20) 

which is never zero unless p = 0  or p = 1, or 4 ( a ) =  4 ( - a )  corresponding 
to an infinite-temperature dynamics; if K1 ~> 2K 2 > 0 (ferromagnetic case 
with large enough horizontal coupling), then using the extra (detailed 
balance) condition 4(z )=e-Z4( - z ) ,  it can be checked that all terms in 
(3.19) are strictly positive whenever p r  1 - p  # 0, implying again power 
law decay of the static pair correlations. Of course the same is true for 
KI~<2Kz<0.  

4. P R O O F S  

Proof of Proposition 3. We sketch here the main ideas in the proof 
of Proposition 3. The details are almost identical to the arguments presented 
for reaction-diffusion processes in ref. 15. The general framework consists 
of the Holtey-Stroock ~7) martingale approach to the problem of tightness 
of the family {pc} and to the characterization of a limiting point P. The 
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input is made up of some a priori bounds on the equal-time correlation 
functions and their behavior as e 1'0. It is there that the main reason 
appears why the fast rate limit of our model and the fluctuations about this 
limit are exactly solvable. To zeroth order in e, the distribution at time t 
is an independent collection of one-dimensional product measures. It is 
only at first order in e that the model becomes two dimensional with the 
creation of correlations between different (vertical) columns. The underlying 
dynamics on which the whole problem rests is the simple symmetric exclusion 
process, whose behavior is well understood (see, for example, refs. 16 and 18). 
We now give a more explicit exposition of these various aspects and how 
they appear in the proof. 

Define for every A s s~r ~b e ~ ,  

7](A, ~; t ) -  L~Y;(A, ~)- ~_~[L~Y;(A, ~b)] (4.1a) 

~A 72( , O; t) =- L~[ Y~(A, ~b)] 2 - 2Y~(A, O) L ~ Y~(A, O) (4.1b) 

For every t t> 0, 

M*(t) - Y~(A, q~) - f ds y](A, (J; s) (4.2a) 

N~(t) =- IMP(t)] 2 - f  ds 7~(A, ~b; s) (4.2b) 

are P<martingales with respect to the canonical filtration {~,}. To show 
that for any T >  0, P~ is tight in [0, T] and that any limiting point has 
support on C([0, oo), 5r it is sufficient (17'19 21) to obtain the following 
bounds: for every A e d ,  ~b m 5:, 

sup ~:~0[(Y~(A, ~b)) 2] < oe (4.3) 
O<~t<~T 

and 

sup sup E,~[(Tv(A, ~b; 0) 2] < oe, v = 1, 2 (4.4) 
e O<~t<~T 

To prove the uniqueness of a limiting point, we have to show that if P~ 
converges weakly to P, then the expression (3.7) is a P-martingale. This 
will follow from the fact that, for every g e  Cg~ 

g(Y~,(A, ~ ) ) -  ;~ ds {L~g( Y;(A, fb))- E~[L~g(Y;(A, ~b))] } (4.5) 
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is a PC-martingale with 

L~g( Y•(A, (~)) - F_~[L~g( Y~(A, ~b))] 

= 7](A, (~; s) g'( Y~(A, (~)) 

+ �89 (~; s) g"(Y](A, ~b))+ o(e) (4.6) 

{lim~o[O(S)/e] =0}  and ~], 7~ "converge" to the corresponding term in 
(3.93, i.e., 

lim W~[172(A, ~b; t ) -HBt(A,  ~)HZ] ]  = 0  (4.7a) 
e~O 

lim E~ g~ -Y~(A,r  2 V*J~(Y,(.,~b)) 
s ~ O  \ ~ T l  x e A  

+ 7~(A, ~b; t)} g'(Y~(A, q~)))l = 0 (4.7b) 

for every 0 ~< T~ ~< T2 and bounded continuous function ~ measurable with 
respect to JC/r~, the ~-algebra generated by { Y~(A, ~)), O <. t <. T~, A e ~cj, 

We now consider the various conditions (4.3)-(4.7) in more detail. 
Condition (4.3) is trivial given Proposition 2. In fact, the cross terms in 
[Y~,(A, ~b)] z are of order e and the diagonal terms give 

a ~ ~ [(b(ey)]ZE~E~l,(x,y)]{1-E~E~h(x,y)]} (4.83 
y e Z  x e A  

which is close to 

f dr Z [qS(r)]2 p t (x , r )[1-P, (  x , r )]< ~ 
x e A  

To verify (4.4) (4.7), we need a more explicit form of y], 7~ [defined 
in (4.1)]: 

7](A,(J;t)= Y~(A,A(~)(~) - Y" V*Y~(x,(~;f) (4.9a) 
x ~ A  

with 
f(r/) -- c1((0, 0), (1, 03, q)[q(1, 0 ) -q(O,  0)] (4.9b) 

[c1(-) is as in (1.5)], and 

Y~(x, ~b ; f )=~ /7  ~. ~b(sy)[~ (x,y)f(rlt)-- ~('C_(x,y)f(rl~))] (4.9c) 
yea  e 
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[~ (~.~.) is the shift over lattice vector (x, y)]  and 

1 
A (~b(r) - ~5 [~b(r + e) + ~b(r - e) - 2~b(r)] (4.9d) 

7~(A,~b;t)=~_ ~ ~b(~y)- e ( y + l ) )  [t/~(x,y) q ~ ( x , y + l ) ]  2 
2x~ A ~ VeZ 

8 

x,x'~A yE2~ 

--3x,  x ,+ la~_ l , y ( l~ ) - - f~x ,  x , 1 ax,  y (/'] ~) ] ( 4 . 1 0 a )  

with 

ax, y ( ~ ) -  r (~,,~ao(rt), a0(~) - e~((0, 0), (1, 0), ~ ) [ , ( 0 ,  0) - 0(1, 0 ) ]  ~ 

(4.10b) 

It is easy to see that (4.4) holds trivially for 7~. Condition (4.4) for 7~ 
follows again from Proposition 2. Conditions (4.5) and (4.6) are well- 
known results that do not depend on our specific model. Condition (4.7a) 
is a consequence of Proposition 2. So only (4.7b) remains to be shown. 
Note that (4.7b) asserts that one can approximate 7] by linearizing around 
the solution to Eq. (2.3). It involves a rather deep property of the fluctuation 
field of a local function [see (4.9c)]: it is governed by the fluctuations of 
the density field. A precise formulation is given in Theorem 4 of ref. 15, 
which, in our case, states that for every 0 < z' < z < o% 

lim lim sup ~= ~ 1 f t+e2T 
. . . .  o ~,~.,~.~ "~ L ~ r J ,  ds [Y](x, O ; f ) -  Y](x, b[(~)] 

2] = 0  

(4.11a) 
where 

v{p(x~} ( f ) ]  (4.11b) 
x ~ 2  Z 

where v{o(x)} is a product measure on f2 with density 

v{p~/)(q(x, y ) ) -  p(~), x, y e Z  (4.11c) 

The proof of (4.11) can be copied from ref. 15 by using the appropriate 
(generalized) duality. This duality is obtained by writing the horizontal 
exchange rates as 

cl(i, j, q) = ~ 2~I[~ 6 As(i, j ) ]  (4.12) 
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with 2~/> 0 and {A~(i, j)}~, a finite partition of the configuration space f2 
for which 

c,( i , j ,q)=2~ iff qeA~(i , j )  

The generator of the process can thus be written as 

(4.13) 

L~f ( t / )  = e 2 y" I f ( t / o )  - f ( t / ) ]  + 
i - - j =  +_e2 i - - j =  • 

where 

2~[fOl ~'~ f (q ) ]  

(4.14a) 

~,0 [q if rl(~A~(i,j) (4.14b) 
t/ =~t/'7 if r /~As(i , j )  

To each horizontal bond of nearest neighbors on Z 2, we associate a collection 
of independent Poisson processes with intensities 2~ and to each vertical 
bond there is associated a Poisson clock with intensity ~-2. The dual 
process is now easy to construct and one is in a position to carry over the 
ideas of ref. 15 to finish the proof. | 

Proof of Proposition 4. Equations (3.16), (3.17) are an immediate 
consequence of Proposition 3. To prove (3.18) it is sufficient to require 
[from (3.16)] that 

P{[Y~(x, ~")-v*Jx(Y~, ~))] Y~(x', 0) 

+ Y~(x, ~)[ Y~(x', q/')-VYYA Y~, ~))]} 

= - (B~(x,  (~) Boo(x', ~ ) )  (4.15) 

and to plug in the constant solution p,(x, r ) - p ,  for which 

- V * Y x (  Y~,  ~)) 

= R x 4 ( p ) [  Y ~ ( x  + 2, O) - Y ~ ( x  - 1, ~)  - Y ~ ( x  + 1, (~) + Y ~ ( x  - 2, ~b)] 

+R23(P)[Y~(x+ 1, ~b) -2 r~(x ,  ~b)+ Yoo(x- 1, ~b)] 

(4.16) 

and ax=-2R(p). | 
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